Flexible Template-Free RHO Nanosized Zeolite for Selective CO2 Adsorption
نویسندگان
چکیده
منابع مشابه
Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification.
Zeolite Rho is able to successfully separate CO(2) from CH(4) with the highest selectivity ever observed on the basis of pore diameter and surface polarity. The adsorption of CO(2) provokes structural changes in the zeolite Rho.
متن کاملThermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2 adsorption.
Fully dehydrated and partially sodium-cesium containing RHO zeolite (Na,Cs-RHO) shows a genuine inflection in the CO2 isotherms in the temperature range 293-333 K that can be attributed to a sorbate-induced framework deformation from an acentric (A) to a centric (C) phase due to a partial cation rearrangement. This peculiar sorption pattern can be captured by the formulation of thermodynamic is...
متن کاملSelective Mass Transport of CO2 Containing Mixtures through Zeolite Membranes
In this work, the main aspects regarding the permeation of mixtures containing CO2 and permanent gases such as H2 , N2 and CH4 through zeolite membranes have been investigated, focusing on the description of the mass transport mechanisms taking place inside the pores. First, a brief overview about the performance of the main zeolite membranes used in gas separation (e.g. DDR, CHA, AEI, FAU, etc...
متن کاملImproving CO2 adsorption with new amine-functionalized Y-type zeolite
In this work, a new synthesized Y-type zeolite with an Si/Al molar ratio of 2.5 (NaY) was modified with amines, in order to probe the influence of the modification of the adsorbent’s surface on CO2 adsorption. The three selected amines were diethanolamine, tetraethylenepentamine, and 2- methylaminoethanol. The surface nature of NaY was changed after amine modification, which causes a...
متن کاملSelective CO2 gas adsorption in the narrow crystalline cavities of flexible peptide metallo-macrocycles.
Crystalline peptide Ni(ii)-macrocycles (BF4(-) salt) exhibited moderate CO2 gas adsorption (ca. 6-7 CO2 molecules per macrocycle) into very narrow cavities (narrowest part <2 Å), accompanied by the expansion of the cavities. The BF4(-) salt demonstrated selective uptake of CO2 gas in preference to CH4 and N2 gases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemistry of Materials
سال: 2020
ISSN: 0897-4756,1520-5002
DOI: 10.1021/acs.chemmater.0c01016